STAR upgrade plan

- I. STAR Beam Energy Scan II Program (2019~2021)
- II. Forward Upgrade & Opportunities at STAR (2021+)

Qinghua Xu (Shandong University) for the STAR Collaboration

RHIC-AGS user Meeting, BNL, June, 2018

Beam Energy Scan Program at RHIC

 Heavy ion collisions allow to explore the QCD phase structure by varying the collision energy.

Goals of RHIC- BES program:

- ✓ Turn-off of QGP signatures
- ✓ Search critical point
- √ 1st order phase transition

√S _{NN} (GeV)	Proposed Event Goals (M)	BES-I Event (M)
7.7	100	4
9.1	160	N/A
11.5	230	12
14.5	300	20
19.6	400	36
3.0 - 7.7*	100 per energ	y N/A

*Fixed-target program

RHIC Beam Energy Scan II- Physics

- Beam Energy Scan Phase I Results (2010-2014):
 - ✓ Seen the turn-off of QGP signatures.
 - ✓ Seen suggestions of the first order phase transition.
 - ✓ Seen indication of a critical point, but not conclusive.
- The most promising region for refining the search is in the energies -> 19.6, 15, 11.5, 7.7, and lower -> BES II (2019-2021)

Kurtosis measurement with BES

Critical point search- Kurtosis measurement

Extend the rapidity coverage to enhance the sensitivity with iTPC:

- ✓ Non-trivial energy dependence from BES-I
- ✓ Rapidity length of correlation is important

Detector upgrades for BES II

iTPC Upgrade:

- Rebuilds inner sectors of the TPC
- Continuous Coverage
- Extends η coverage from 1.0 to 1.5
- Improves dE/dx
- Lowers p_T cut-in from 125 to 60 MeV/c

EndCap TOF Upgrade:

- PID at η = 0.9 to 1.5
- Allows higher energy range of Fixed-Target program
- Provided by CBM-FAIR

EPD Upgrade:

- Allows a better and independent reaction plane measurement critical to BES physics
- Improves trigger
- Reduces background

Detector upgrades for BES II

The inner TPC upgrade

Replace all 24 inner sectors

- √ New strongback & pad plane
- ✓ Increase readout pad rows (13 to 40)
 -Coverage increased from 20% to ~100%
- ✓ Renew all three wire grids

New electronics for inner sectors

 ✓ Doubled the readout channels, using ALICE SAMPA chip

New designed insertion tooling

✓ Removal and insertion of inner sectors

iTPC status

- ✓ One sector has been installed in Oct. 2017
- ✓ 80% of MWPC sectors have been produced,
 12 sectors shipped to BNL.
- ✓ Full installation in fall of 2018

iTPC Performance

- Excellent performance in bench test for MWPC: [NIM A 896 (2018) 90]
 - ✓ Gas gain uniformity < 1.5% (RMS)</p>
 - ✓ Energy resolution ~ 20% (FWHM)
 - ✓ Good stability under X-ray irradiation test
- iTPC (one sector) performance in 2018 isobar collisions :
 - ✓ Maximum hits number per track: 45 → 72
 - ✓ Lower transverse momentum threshold of 60 MeV/c
 - √ η coverage extended by 0.4 units.

The endcap Time-Of-Flight

- Install, commission and use 10% of the CBM TOF modules at STAR.
- Design concept:
 - √ 3 layers, 12 sectors, 36 modules, 108 MRPCs

Collider mode

- Provides PID in the forward direction
 - ✓ Extended rapidity and yields
- One sector with three modules has been installed for runs in 2018
- Full installation in November 2018

The endcap Time-Of-Flight

- Successfully commissioned in 2017 (one module)
 - Interface to STAR event builder & barrel TOF
- Engineering design for STAR module completed
 - Mounting scheme, HV distribution, gas system layout, etc.
- System integration successful → data taking in 2018
 - Reasonable η - ϕ hit distribution \rightarrow eTOF working properly
 - Time resolution 59 ps

Counter time resolution: 59 ps

Qinghua Xu (Shandong University)

Event Plane Detector

EPD: Scintillator + Wave Length Shifting fibers + Silicon Photon Multiplier

- 2 Wheels
 - ✓ East and West EPD (2.1 < $|\eta|$ < 5.1)
- 12 super sectors
 - ✓ Scintillator wedges, milled to form 31 tiles
 - ✓ Optically separated by epoxy
- Fiber Optics
 - ✓ Wavelength-shifting fibers
 - ✓ Grouped in 3D-printed connectors
- Sensors
 - ✓ Silicon Photon Multiplier (SiPM)

EPD Performance

- Measure current in SiPM using Strontium source
 - ✓ Tile uniformity within 2%, cross-talk less than 1%
- All 744 tiles are good
- Good correlation between BBC and EPD → correct timing
- Timing resolution is about 0.75 ns with fastest TAC method
 - √ 0.35 ns with average TAC method, raw slewing correction
- The second-order event plane resolution is 0.37 in 20-30% centrality in the run 18 isobar collisions, significantly improved compared using BBC.

Looking Forward at STAR

Beam Energy Scan II 2019~2021

iTPC, eToF, EPD

Forward Physics 2021+

- ✓ Forward Tracking System
- ✓ Forward Calorimeter System

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0669

Physics motivation I- (un)polarized pp/pA

Measurements planed in 2021+ with forward upgrade:

√s (GeV)	Delivered	Scientific Goals	Observable	Required
V 3 (GCV)	Luminosity	Setemane Gould	Observable	Upgrade
p [↑] p @ 200	300 pb ⁻¹	Subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and flavor	Forward instrum.
	8 weeks		enhanced jets	ECal+HCal+Tracking
p [↑] Au @ 200	1.8 pb ⁻¹	What is the nature of the initial state and hadronization in	R_{pAu} direct photons and DY	
	8 weeks	nuclear collisions		Forward instrum.
				ECal+Hcal+Tracking
		Clear signatures for Saturation	Dihadrons, γ-jet, h-jet, diffraction	
p [↑] Al @ 200	12.6 pb ⁻¹	A-dependence of nPDF,	R_{pAl} : direct photons and DY	Forward instrum.
	8 weeks			ECal+HCal+Tracking
		A-dependence for Saturation	Dihadrons, γ-jet, h-jet, diffraction	
$p^{\uparrow}p @ 510$	1.1 fb ⁻¹	TMDs at low and high x	A_{UT} for Collins observables, i.e.	Forward instrum.
	10 weeks		hadron in jet modulations at $\eta > 1$	ECal+HCal+Tracking
$\overrightarrow{p}\overrightarrow{p}$ @ 510	1.1 fb ⁻¹	$\Delta g(x)$ at small x	A_{LL} for jets, di-jets, h/ γ -jets	Forward instrum.
	10 weeks		at $\eta > 1$	ECal+HCal

2 THE PHYSICS OF THE FORWARD UPGRADE

- 2.1 TRANSVERSE POLARIZATION EFFECTS IN THE PROTON: TWIST-3 AND TMDS
- 2.2 Transversity, Collins and Interference Fragmentation Functions
- 2.2.1 OPPORTUNITIES WITH A FUTURE RUN AT 500 GEV
- 2.3 Using Dijets to access ΔG at $\sqrt{s} = 500$ GeV
- 2.4 PHYSICS OPPORTUNITIES WITH (UN)POLARIZED PROTON-NUCLEUS COLLISIONS

Example: TMD-Collins and Sivers asymmetry

STAR unique kinematics with polarized pp at RHIC: from high to low x at high Q²

Example: forward jets to constrain Δg at small x

Significant contribution from gluon spin to proton spin found at RHIC:

✓ Further constraint can be obtained with forward dijet spin asymmetry measurements.

Phys. Rev D95 71103 (2017)

Example: initial state in heavy ion collisions

- pA at RHIC: unique kinematics coverage:
 - ✓ What are the nPDFs at low-x?
 - ✓ How saturated is the initial state of the nucleus?
 - ✓ What is the spatial transverse distribution of nucleons and gluons?

- ✓ Can measure nPDF in a x-Q² region where nuclear effects are large
- Observables free of final state effects
 Gluons: R_{pA} for direct photons
 Sea-quarks: R_{pA} for DY
- Scan A-dependence prediction by saturation models
- Access saturation regime at forward rapidity

Physics motivation II- AA

Measurements planed in 2021+ with forward upgrade:

Physics Measurements		Longitudinal de-correlation	Mixed flow	Dila	Event Shape	
Detectors	Acceptance	$C_{n}(\Delta \eta)$ $r_{n}(\eta_{\omega}\eta_{b})$	η/s(T), ζ/s(T)	Harmonics $C_{m,n,m+n}$	Ridge	and Jet- studies
Forward Calorimeter (FCS)	$-2.5 > \eta > -4.2 E_T$ (photons, hadrons)	One of these		One of these	Good to have	One of these
Forward Tracking System (FTS)	$-2.5 > \eta > -4.2$ (charged particles)	detectors necessary	Important	detectors necessary mportant	Important	detectors needed

- 2.5 RIDGE IN P+P, P+A AND A+A
- 2.6 CORRELATION MEASUREMENTS TO CHARACTERIZE HOT AND DENSE NUCLEAR MATTER
- 2.6.1 A MORE PRECISE ESTIMATION OF FLOW THROUGH MEASUREMENTS OF LONG-RANGE CORRELATIONS
- 2.6.2 CONSTRAINING LONGITUDINAL STRUCTURE OF THE INITIAL STAGES OF HEAVY ION COLLISIONS

Global Polarization in the forward region

- ✓ Polarization increases with viscosity
- ✓ Rapidity dependence is key
- ✓ Different models predict opposite rapidity trend

Hydrodynamic calculations:

Li, Pang, Wang & Xia, PRC 96 (2017) 054908; (private comm.) F. Beccattini et al. EPJC 75(2015)406;

Y. Sun& C. M., Ko, PRC96, 024906 (2017)

Forward upgrade: FTS+FCS

Forward Tracking System

STAR Forward Tracking System (2.5 < \eta < 4.0):

- 3 layers of silicon mini-strip disk
 - ✓ Location from IP: 90, 140, 187 cm
 - ✓ Successful experience of STAR Intermediate Silicon Tracker (IST) detector.
- 4 layers of Small-Strip Thin Gap Chamber (sTGC) wheel'
 - ✓ Location from IP: 270, 300, 330, 360 cm
 - ✓ Significant reduction of the project cost
 - ✓ Possible reuse of STAR TPC electronics for readout
- Detector requirements
 - ✓ Momentum resolution: 20-30% for $0.2 < p_T < 2 \text{ GeV/c (AA)}$
 - ✓ Tracking efficiency: 80% at 100 tracks per event (AA)
 - ✓ Charge separation (pp/pA)
- Cost: \$3.3M mostly will be covered by China consortium +UIC+ BNL

STAR FTS simulation

- FTS in STAR simulation framework
 - ✓ 3 silicon + 4 sTGC
 - ✓ Tracking efficiency 70%~80% for tracking number 10~100
 - ✓ Wrong charge sign: a few percent
 - ✓ Equivalent to 6 silicon disks option

Forward Tracking System-Silicon

3 Silicon disks:

- 12 wedges, each with 128 strips in φ at fixed r and 8 strips in the r direction.
- Single-sided double-metal Silicon Mini-strip sensors
 - ✓ under development @UIC
- Several different frontend chips, APV25-S1 chip → IST
- IST DAQ system for FTS if using APV25-S1
- Replicating the STAR IST cooling system to cool the FTS
- Monte Carlo Simulation
 - ✓ Performance and layout optimization of Silicon sensors underway

APV25-S1

Forward Tracking System-sTGC

4 sTGC disks:

- Use ATLAS technique at SDU
- Position resolution ~ 100 μm
- Two layers each disk (90° angle), to provide x-y position.
- Signal seen by testing ATLAS module using STAR TPC electronics.
- Material budget: ~ 0.5% per layer.
- 1st sTGC prototype for STAR to be made at SDU in 2018
 - √ ¼ size of ATLAS sTGC in length
 - √ 30 cm x 30 cm module with 2 layers
 - ✓ Strip of 30 cm each

Forward Calorimeter System

FCS Requirements for different physics:

Detector	pp and pA	AA
ECal	~10%/\E	~20%/\E
HCal	~60%/\E	

Preshower detector

EM Calorimeter

- PHENIX PbSc
- New readout SiPM/APD
- Not compensated

Hadronic Calorimeter

- Sampling iron-scintillator
- Same readout as EMC
- ✓ Calorimeter R&D as part of EIC study
- ✓ Balance of cost and performance

-Preshower \$ 0.06M

-Covered in the U.S.

Forward Calorimeter System

- Intensive R&D work on both ECal and HCal as part of STAR and EIC R&D
- Test FCS' ECal in STAR at 2017.
 - ✓ Sampling Calorimeter
 - √ FEEs
 - ✓ Sensors with help from EIC R&D
 - ✓ SiPMs, Hammamastsu 6x6 mm²
 - ✓ Digitizers
- FEEs and Detector Electronics Platform has been fully integrated to STAR
- In 2018
 - ✓ Large scale ECal prototype
 - ✓ 2nd iteration of FEEs and DEP
 - ✓ HCal towers

Detector Electronics Platform (DEP)

Summary

BES-II related detector upgrades show excellent progress:

- ✓ iTPC : one sector installed, good performance obtained. 80% sectors produced.
- ✓ EPD : fully installed, good event plane resolution obtained.
- ✓ eTOF : one sector installed, engineering design completed.
- ✓ Full installation of iTPC and eTOF in fall of 2018 for the BES-II program (2019-2021).
- STAR forward upgrade enables unique opportunities to cold QCD and HI physics in 2021+ during sPHENIX time:
 - ✓ Forward Tracking System: Silicon + sTGC
 - sTGC prototype to be made at SDU, planning test in 2019 at STAR.
 - Intensive R&D of Silicon sensors is ongoing at UIC&NCKU
 - ✓ Forward Calorimeter System: Ecal + Hcal
 - Large scale prototype calorimeter beam test planned early 2019 at Fermilab

Backup

Example: Correlation Measurements to Characterize QGP

- ✓ The correlation at forward rapidity constrains the longitudinal structure of initial conditions
- ✓ Probe small x PDF with forward jets and forward-backward jet correlations.
- ✓ Forward jet quenching and QGP tomography

Example: forward hyperon polarization in pp

- Induced ∧ polarization in unpolarized pp
- Spin transfer in both longitudinal and transverse polarized pp : D_{LL} & D_{TT}
 - -Sizable effects expected in forward region

MC with FCS+FTS in pp:

Example: forward jets to constrain Δg at small x

Di-lepton measurement- Chiral Symmetry Restoration

Reduce the systematic uncertainty for di-lepton:

- ✓ Systematically study di-electron continuum from $\sqrt{s_{NN}} = 7.7 19.6$ GeV
- ✓ Low invariant Mass Range (LMR) excess → chiral symmetry restoration